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The simplest model of isotropic compressible turbulence consists of the Euler
equations augmented by the equation for the turbulent energy. This model can also
be viewed as the Euler equations for a continuum with two independent entropies.
One of them is a conventional thermodynamic entropy, and the other is associated
with the turbulent energy. The shock relations for this model are examined. It is
shown that the turbulent entropy cannot exceed some critical value. We propose a
closed set of Rankine–Hugoniot relations for the description of shock waves in such
a medium based on this estimation.

1. Introduction
Euler equations for a compressible fluid with two independent entropies (or

temperatures) appear in the description of turbulent gas flows (Mohammadi &
Pironneau 1994; Wilcox 1998), in plasma physics (Zel’dovich & Raizer 2002), and
in multiphase flow modelling (Kapila et al. 2001). Since the governing equations are
hyperbolic, shock waves can appear, and a system of Rankine–Hugoniot relations is
needed. The classical conservation laws of the mass, the momentum and the energy
are not sufficient to close the system. An additional closure relation is needed. There is
no universal approach to this problem. One of the possibilities is to look for travelling
wave solutions to the Navier–Stokes-type equations connecting the gas states ahead
of and behind the shock. The condition of existence of these solutions implicitly
determines the missing closure relation (Berthon & Coquel 2002). Approximate jump
relations for the turbulent shocks of small amplitude based on a non-conservative
form of the governing equations were proposed by Forestier, Hérard & Louis (1997).
Another approach is developed in Gavrilyuk, Gouin & Perepechko (1998) where the
Rankine–Hugoniot relations for non-conservative two-phase flow models are obtained
from the Hamilton principle of stationary action. Other approaches may exist which
are specific to the physical model under consideration. For example, in plasma physics
it is usually assumed that the entropy of electrons is conserved through the shock.
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Such an assumption closes the system of jump relations. This simple hypothesis,
where one of the entropies does not change, is not suitable for shocks in turbulent
gas flows because both entropies (one is the conventional thermodynamic entropy,
and the second is the entropy associated with the turbulent energy) vary.

The closure problem for turbulent shocks is one of the key problems. Its solution is
the basic ingredient for the solution of the Riemann problem for the non-conservative
turbulence models as well as two-phase flow models, where the two-velocity effects
are analogous to the turbulence effects. In this article we formulate a closure relation
for turbulent gas flows which is analogous to the Chapman–Jouguet relation in
detonation theory. We postulate that the turbulent entropy attains its maximum after
the shock. As a consequence of this, the thermodynamic entropy attains its minimum.
This minimax solution closes the system of jump relations.

2. A simple model of turbulent gas flows
The simplest multi-dimensional model of compressible turbulent flows can be

written in the following form (Mohammadi & Pironneau 1994; Wilcox 1998):

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ρu
∂t

+ ∇ · (ρu ⊗ u + P I) = 0, P = p + pT = p + (Γ − 1)k,

∂

∂t

(
ρε +

ρ |u|2

2
+ k

)
+ ∇ ·

(
u
(

ρε +
ρ |u|2

2
+ k + P

))
= 0,

∂(ρη)

∂t
+ ∇ · (ρηu) = 0.




(2.1)

Here ρ is the gas density, u is the velocity field, I is the unit tensor, p is the
thermodynamic pressure, pT is the turbulent pressure, k is the volume turbulent
energy, ε is the specific internal energy, Γ is the ‘turbulent’ polytropic exponent
depending on whether the velocity fluctuations are three-dimensional (Γ = 5/3), two-
dimensional (Γ = 2) or one-dimensional (Γ = 3). The specific internal energy ε(v, p)
is related to the thermodynamic pressure p(v, η) by the Gibbs identity:

θdη = dε + pdv

where θ is the gas temperature, η is the specific entropy, and v = 1/ρ is the specific
volume. System (2.1) implies the following equation:

∂�

∂t
+ u · ∇� = 0

where the ‘turbulent entropy’ � is given by

� =
k

ρΓ
.

This quantity is analogous to the thermodynamic entropy η which is also conserved
along trajectories. Formally, by introducing the turbulent entropy �, system (2.1)
describes a medium having two entropies (or two temperatures). An example of such
a medium can also be found in plasma physics where the electrons and the ions may
have different entropies (different temperatures). System (2.1) is hyperbolic. In the
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one-dimensional case the characteristic slopes are

λ1,2 = u, λ3,4 = u ± cT

where the ‘turbulent’ sound velocity cT is given by

c2
T = c2 + Γ (Γ − 1)

k

ρ
=

∂p

∂ρ

∣∣∣∣
η

+ Γ (Γ − 1) �ρΓ −1.

When shock waves appear, a system of shock relations (Rankine–Hugoniot relations)
is needed. The conservation of the mass, the momentum and the energy are well-
established in the analysis of shock waves. However they are not sufficient to close
the system.

3. Rankine–Hugoniot relations
For a given state ahead the shock and, for example, a given shock velocity D, we

have to determine the state behind the shock. We do not deal with the internal wave
structure because it needs knowledge of the production and dissipation terms in the
entropy equations which, a priori, are not known. We focus here on the determination
of the turbulent entropy jump between equilibrium states. We will denote the variables
ahead of the shock with the index 0; the variables behind the shock will be without
indices. Conservation of the mass, the momentum and the energy are written

ρ(u − D) = −ρ0D = m,

p + pT − p0 + m2(v − v0) = 0, v = 1/ρ,

ε(v, p) + εT − ε(v0, p0) + 1
2
(p + pT + p0)(v − v0) = 0.


 (3.1)

Here εT = kv, pT = (Γ −1)k and we have supposed that the initial state is at rest and
turbulence free (u0 = 0, pT 0 = 0, εT 0 = 0). To determine the turbulent energy behind
the shock, one more relation is needed. We will take an estimate of the turbulent
energy (turbulent entropy) as a function of shock velocity.

We consider the internal energy as a function of (v, P ), P = p + pT , and rewrite
jump conditions (3.1) in the form

E(v, P, �) − E(v0, P0, 0) + 1
2
(P + P0)(v − v0) = 0,

P − P0 + m2(v − v0) = 0.

}
(3.2)

Here we have introduced

E(v, P, �) = ε(v, P − (Γ − 1)�v−Γ ) + �v−(Γ −1). (3.3)

The second relation of (3.2) determines the Rayleigh line in the plane (P, v). We say
that the turbulence is ‘exothermic’, if

∂E

∂�

∣∣∣∣
v,P

< 0,

and ‘endothermic’, if

∂E

∂�

∣∣∣∣
v,P

> 0.

Since

∂E

∂�

∣∣∣∣
v,P

= v−Γ

(
−(Γ − 1)

∂ε

∂p

∣∣∣∣
v

+ v

)
= v−Γ ∂ε

∂p

∣∣∣∣
v

(G − (Γ − 1)) , G = v

(
∂ε

∂p

∣∣∣∣
v

)−1

,
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these inequalities can be expressed in terms of the Grüneisen coefficient G (Fickett
& Davis 1979): for exothermic (endothermic) turbulence the Grüneisen coefficient is
smaller (larger) than Γ − 1. In particular, for the ideal gas we have

ε(v, p) =
pv

γ − 1
,

and G = γ − 1, where γ > 1 is the polytropic exponent. In terms of (P, v) variables
we obtain

ε(v, p) =
Pv

γ − 1
− (Γ − 1) �v−(Γ −1)

γ − 1
= ε(v, P ) − Γ − 1

γ − 1
�v−(Γ −1)

and

E(v, P, �) = ε(v, p) + εT (�, v) = ε(v, P ) − Γ − γ

γ − 1
�v−(Γ −1).

Obviously, the turbulence is exothermic if Γ > γ . The quantity

q =
Γ − γ

γ − 1
�v−(Γ −1)

plays the role of ‘heat release’. It is not a constant, its value being determined, in
particular, by the shock velocity.

The Gibbs identity written in terms of the total energy E(v, P, �) is

θ dη + v−(Γ −1) d� =dE + P dv (3.4)

We call the function H (v, P ; �, v0, P0) (of centre (v0, P0) and intensity �) the Hugoniot
function of the turbulent gas flow defined by the formula

H (v, P ; �, v0, P0) = E(v, P, �) − E(v0, P0, 0) + 1
2
(P + P0)(v − v0).

For a fixed value of � the Hugoniot curve H (v, P ; �, v0, P0) = 0 passes through the
centre (v0, P0) only if � = 0. We will suppose that

(i) the turbulence is exothermic (Γ > γ for a polytropic gas);
(ii) a straight line through the centre (v0, P0) of negative slope intersects the

Hugoniot curve H (v, P ; �, v0, P0) = 0 with a given � in at most two points (i.e. they
can have at most one tangent point).

The ideal gas satisfies these properties.
For a fixed �, let us consider the variation of H (v, P ; �, v0, P0) along the Rayleigh

line. Taking into account the Gibbs identity (3.4) we obtain

dH (v, P ; �, v0, P0) = θdη + v−(Γ −1) d� = θ dη.

This equality is an analogue of that in classical gas dynamics (Courant & Friedrichs
1948). For a given slope of the Rayleigh line, the turbulent entropy cannot
exceed a value �∗ such that the Rayleigh line is tangent to the Hugoniot curve
H (v, P ; �∗, v0, P0) = 0 at a point (v∗, P∗) (see figure 1 where the point (v∗, P∗) is
denoted by CJ ). Hence, the turbulent entropy � has a relative maximum at point
(v∗, P∗). Then, at this point dH = 0 and, hence dη = 0. Moreover, since along the
Rayleigh line

dH = θdη

then

d2H = dθ dη + θ d2η.



Estimation of the turbulent energy production across a shock wave 135

v

P

CJ

κ = 0

κ*

κ

P0

P*

v0v*

Figure 1. The turbulent entropy attains its relative maximum in the shock while the ther-
modynamic entropy attains its relative minimum. In this figure, it corresponds to the point
CJ which is the point where the Hugoniot curve H (v, P ; �∗, v0, P0) = 0 is tangent to the
Rayleigh line (shown in bold) passing through (v0, P0). � and �∗ indicate the Hugoniot curves
corresponding to an intermediate value of � and the critical value �∗.

Since

d2H < 0

at point (v∗, P∗), then

d2η < 0.

Hence, the thermodynamic entropy has a relative minimum at point (v∗, P∗). The shock
front is supersonic with respect to the state of the gas ahead of the front, and sonic
with respect to the state of the gas behind the front.

For a given value of the shock velocity D (or a given value of m2 = ρ2
0D

2) the
maximal value of the entropy � = �∗ can be attained. The hypothesis that � = �∗
behind the shock would be a reasonable assumption to close the Rankine–Hugoniot
system.

Remark This minimax principle was partially used earlier by Saurel, Gavrilyuk
& Renaud (2003) in the problem of shock–bubble interaction. This complex multi-
dimensional phenomenon was described by a one-dimensional two-velocity model
with several entropies (two thermodynamic entropies and two turbulent entropies).
They assumed that velocity and pressure relaxation effects are responsible for the
increase of the turbulent entropies (which appeared due to the Richtmeyer–Meshkov
instability). The thermodynamic entropies did not change during this process. This
hypothesis was in a perfect agreement with multi-dimensional simulations.

4. Numerical results
4.1. Qualitative properties of the CJ point

We have considered a one-dimensional case with three-dimensional velocity fluc-
tuations (Γ = 5/3) and have chosen the polytropic gas with γ =4/3. The problem to
be solved is to determine for a given value of m2 > 4

3
ρ0P0 the value of � = �∗ such
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Figure 2. The critical turbulent entropy as a function of m2 is shown in dimensionless

variables �/(P0v
5/3
0 ) and m2v0/P0 in the vicinity of m2v0/P0 = 4/3. A nonlinear behaviour is

observed.
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Figure 3. As figure 2 but for large m2. We see that this dependence is linear for large m2.

that the following curves are tangent:

P =
P0(7v0 − v) + 2�v−2/3

7v − v0

, P − P0 + m2(v − v0) = 0.

The first curve is the Hugoniot curve for Γ = 5/3 and γ = 4/3, and the second is the
Rayleigh line. The unknown quantity

q = �v−2/3

plays the role of a non-constant ‘heat release’. We show the dependence of �∗ on
m2 in figures 2 and 3. The dependence of the turbulent entropy for shocks of small
amplitude (for m2 in the vicinity of 4

3
ρ0P0) is nonlinear (figure 2); it increases very
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Figure 4. The specific volume at the CJ point as a function of m2 is shown in dimensionless
variables v∗/v0 and m2v0/P0. Asymptotically, this critical value tends to a constant. This is a

reason why for large m2 the product �∗v
−2/3
∗ also behaves linearly with respect to m2.

slowly with m2. For large values of m2 the turbulent entropy �∗ behaves linearly with
respect to m2 (figure 3). Since the specific volume at the CJ point does not depend on
m2 for large m2 (figure 4), the same conclusion will hold for q = �∗v

−2/3
∗ . This implies

some interesting consequences. In detonation theory with q =const and γ =const it
is known that the CJ velocity is proportional to

√
q (Fickett & Davis 1979):

D ≈ √
q.

We have shown that the same behaviour takes place for large values of m2. The only
difference is in using this formula: for shocks it determines q for a given D, and for
detonation waves it determines D for a given q .

4.2. Comparison with DNS data

In order to check the validity of the present model we compare its predictions with a
direct numerical simulation of turbulent flows. The flow configuration retained is the
simplest one: a one-dimensional periodic system of gas layers of different densities
(figure 5) where a shock is created by a piston propagating with a constant velocity.
Quite rapidly, a stationary dispersive shock wave forms. Reflections at the material
interfaces are responsible for the turbulent behaviour of the gas. Since the velocity
fluctuations are one-dimensional, Γ = 3. The turbulent energy k is calculated by

k =
ρu2

2
− (ρu)2

2ρ

where for any function f its average is defined by

f (x) =
1

L

∫ x+L/2

x−L/2

f (z) dz.

For simplicity, we have taken the layers to have the same width H . It was checked that
the results do not depend on L if it varies between 2H and 10H . In this computation
we have taken L = 4H. The initial data were chosen as follows: ρ1 = ρ0(1 − δ),
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Figure 5. A piston propagates to the right with a constant velocity V in a periodic system of
gas layers of different densities ρ1 and ρ2.
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Figure 6. The turbulent energy k as a function of x is shown for two time instants. We
see that the wave is stationary (its profile does not change with time) and is very localized.
The parameters of the computation are: piston velocity V = 50m s−1, H = 0.02 m. The
computational domain contains 100 gas layers.

ρ2 = ρ0(1 + δ), δ = 0.1, ρ0 = 1 kg m−3, p0 = 105 kg m−1 s−2, γ1 = γ2 = 4/3. The com-
putation was performed with 30 grid cells in each gas layer. A second-order variant
of the Godunov scheme was used. Typical behaviour of the turbulent energy k is
shown in figure 6 for two different time instants. The turbulent energy k is localized at
the shock front. Its maximal value does not vary in this time interval which confirms
that a stationary shock is formed. Computations were done for different values of the
piston velocities: 25, 50, 100 and 200 m s−1. They correspond to Mach numbers 1.06,
1.1, 1.2 and 1.4 calculated for stationary shock profiles (here the Mach number M is
defined by M2 = 3m2v0/(4P0)). The comparison is shown in figure 7. The theoretical
value of � (curve) is always greater than numerical data obtained by DNS (squares).
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Figure 7. The critical turbulent entropy as a function of m2 is shown in dimensionless
variables �∗/(P0v

3
0) and m2v0/P0 for m2v0/P0 > 4/3 (M2 > 1). The theoretical values (curve)

are always an upper bound for the DNS data (squares). For the Mach numbers near one this
bound is almost exact.

This confirms that our estimation is an upper bound. We also see that for the Mach
numbers near one, small density perturbations are sufficient (δ = 0.1) to attain the
maximal value of �. For larger Mach numbers some deviation from the theoretical
curve is observed. An interesting question arises: what is the ‘optimal’ configuration of
initial perturbations giving the maximal value of the turbulent entropy? This question
needs further study.

REFERENCES

Berthon, C. & Coquel, F. 2002 Nonlinear projection methods for multi-entropies Navier-Stokes
equations. In Innovative Methods for Numerical Solutions of Partial Differential Equations,
Arcachon, 1998, pp. 278–304. World Scientific.

Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Interscience.

Fickett, W. & Davis, W. C. 1979 Detonation: Theory and Experiment. University of California Press,
Berkeley.

Forestier, A., Hérard, J.-M. & Louis, X. 1997 Solveur de type Godunov pour simuler les
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